1. 5×8의 값은? [2점]
 ① 10 ② 15 ③ 20 ④ 25 ⑤ 30

2. 두 행렬 $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix}$에 대하여 행렬 $A + B$의 모든 성분의 합은? [2점]
 ① 5 ② 6 ③ 7 ④ 8 ⑤ 9

3. $\lim_{n \to \infty} \frac{4n^2 + 6}{n^2 + 3n}$의 값은? [2점]
 ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

4. 다음 그래프의 각 꼭짓점 사이의 연결 관계를 나타내는 행렬의 성분 중 0의 개수는? [3점]
 ① 17 ② 15 ③ 13 ④ 11 ⑤ 9

2015학년도 대학수학능력시험 문제지
수학 영역 (A형)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. 공비가 양수인 등비수열 ({a_n}) 에 대하여 (a_1 = 3, a_5 = 48)일 때, (a_3)의 값은? [3점]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6. (\int_{0}^{1} (2x+a) , dx = 4) 일 때, 상수 (a)의 값은? [3점]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>7. 다항식 ((x+a)^n)의 전개식에서 (x^1)의 계수가 60일 때, 양수 (a)의 값은? [3점]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
8. 함수 \(y = f(x) \)의 그래프가 그림과 같다.

\[
\lim_{x \to 0} f(x) + \lim_{x \to 1} f(x)
\]
의 값은? [3점]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

9. 수열 \(\{a_n\} \)의 첫째항부터 제\(N \)항까지의 합 \(S_N \)이

\[
S_N = \frac{N}{N+1}
\]
일 때, \(a_1 \)의 값은? [3점]

① \(\frac{1}{14} \) ② \(\frac{1}{16} \) ③ \(\frac{1}{18} \) ④ \(\frac{1}{20} \) ⑤ \(\frac{1}{22} \)

10. 디지털 사진을 압축할 때 원본 사진과 압축한 사진의 다른 정도를 나타내는 지표인 최대 신호 대 잡음비 \(P \), 원본 사진과 압축한 사진의 평균제곱오차를 \(E \)라 하면 다음과 같은 관계식이 성립한다고 한다.

\[
P = 20 \log_{10} \frac{255}{10 \log E} (E > 0)
\]

두 원본 사진 \(A, B \)를 압축했을 때 최대 신호 대 잡음비 각각 \(P_A, P_B \)라 하고, 평균제곱오차 각각 \(E_A, E_B \)라고 하자. \(E_B = 100 E_A \)일 때, \(P_A - P_B \)의 값은?

[3점]

① 10 ② 15 ③ 20 ④ 25 ⑤ 30
11. 등비수열 \(\{a_n\} \)에 대하여 \(a_1 = 3, a_2 = 1 \)일 때,
\[\sum_{n=1}^{\infty} (a_n)^2 \]의 값은? [3점]

\[
\begin{array}{c}
1. \frac{89}{8} \\
2. \frac{87}{8} \\
3. \frac{85}{8} \\
4. \frac{83}{8} \\
5. \frac{81}{8}
\end{array}
\]

12. 어느 연구소에서 토마토 모종을 심은 지 3주가 지났을 때
토마토 줄기의 길이를 조사한 결과 토마토 줄기의 길이는
평균이 30cm, 표준편차가 2cm인 정규분포를 따른다고 한다.
이 연구소에서 토마토 모종을 심은 지
3주가 지났을 때 토마토 줄기 중
임의로 선택한 줄기의 길이가
27cm 이상이고 32cm 이하일 확률은? [3점]

\[
\begin{array}{c|c}
\text{z} & P(0 \leq Z \leq z) \\
\hline
1.0 & 0.3413 \\
1.5 & 0.4332 \\
2.0 & 0.4772 \\
2.5 & 0.4998
\end{array}
\]

\[
\begin{array}{c}
1. 0.6826 \\
2. 0.7745 \\
3. 0.8185 \\
4. 0.9104 \\
5. 0.9270
\end{array}
\]
[13~14] 함수 \(f(x) = x(x+1)(x-4) \)에 대하여 13번과 14번의 두 물음에 답하시오.

13. 행렬 \(A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \)에 대하여 \(A \begin{pmatrix} f(a) \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \)을 만족시키는 모든 상수 \(a \)의 값의 합은? [3점]

 ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

14. 직선 \(y = 5x + k \)와 함수 \(y = f(x) \)의 그래프가 서로 다른 두 점에서 만남 때, 양수 \(k \)의 값은? [4점]

 ① 5 ② \(\frac{11}{2} \) ③ 6 ④ \(\frac{13}{2} \) ⑤ 7
15. 지수부등식 \(\left(\frac{1}{5} \right)^{1-2x} \leq 5^{-x} \)을 만족시키는 모든 자연수 \(x \)의 값을 합한 값은? [4점]
 ① 11 ② 12 ③ 13 ④ 14 ⑤ 15

16. 두 사건 \(A, B \)에 대하여
 \[P(A) = \frac{1}{3}, \ P(A \cap B) = \frac{1}{8} \]
 일 때, \(P(B^c | A) \)의 값은? (단, \(B^c \)는 \(B \)의 여사건이다.) [4점]
 ① \(\frac{5}{8} \) ② \(\frac{7}{12} \) ③ \(\frac{13}{24} \) ④ \(\frac{1}{2} \) ⑤ \(\frac{11}{24} \)
17. 등차수열 \(\{a_n\} \) 이 \(\sum_{k=1}^{n} a_{2k-1} = 3n^2 + n \) 을 만족시킬 때, \(a_n \)의 값은? [4점]
 ① 16 ② 19 ③ 22 ④ 25 ⑤ 28

18. 연립방정식
 \[
 \begin{align*}
 x + y + z + 3w &= 14 \\
 x + y + z + w &= 10
 \end{align*}
 \]
 을 만족시키는 음이 아닌 정수 \(x, y, z, w \)의 모든 순서쌍 \((x, y, z, w)\)의 개수는? [4점]
 ① 40 ② 45 ③ 50 ④ 55 ⑤ 60
19. 두 이차정사각행렬 \(A, B\)가

\[
A^2 - AB = 3E, \quad A^2B - B^2A = A + B
\]

를 만족시킬 때, \(<\text{보기}>\)에서 옳은 것만을 있는 데로 고른 것은?
(단, \(E\)는 단위행렬이다.) [4점]

\(<\text{보기}>\>

\(\text{ㄱ. } A\)의 역행렬이 존재한다.

\(\text{ㄴ. } AB = BA\)

\(\text{ㄷ. } (A + 2B)^2 = 2A E\)

\(\text{ㄹ. } A\)의 역행렬이 존재한다.

\(\text{ㅁ. } AB = BA\)

\(\text{ㅂ. } (A + 2B)^2 = 2A E\)

\(\text{① } \text{ㄱ, ㄴ}\)

\(\text{② } \text{ㄷ}\)

\(\text{③ } \text{ㄱ, ㄴ}\)

\(\text{④ } \text{ㄴ, ㄷ}\)

\(\text{⑤ } \text{ㄱ, ㄴ, ㄷ}\)

20. 함수 \(f(x)\)는 모든 실수 \(x\)에 대하여 \(f(x+3) = \frac{x}{x}\)을 만족시키고,

\[
f(x) = \begin{cases}
 x & (0 \leq x < 1) \\
 1 & (1 \leq x < 2) \\
 -x + 3 & (2 \leq x < 3)
\end{cases}
\]

이다. \(\int_{-a}^{a} f(x) \, dx = 13\)일 때, 상수 \(a\)의 값은?
[4점]

\(\begin{array}{cccccc}
\text{① } 10 & \text{② } 12 & \text{③ } 14 & \text{④ } 16 & \text{⑤ } 18 \\
\end{array}\)
21. 다음 조건을 만족시키는 모든 삼차함수 $f(x)$에 대하여 $f''(2)$의 최솟값은? [4점]

(가) $f(x)$의 최고차항의 계수는 1이다.
(나) $f(0) = f'(0)$
(다) $x \geq -1$인 모든 실수 x에 대하여 $f(x) \geq f'(x)$이다.

1 28 2 33 3 38 4 43 5 48

22. \[\lim_{x \to 0} \frac{x(x+7)}{x} \]의 값을 구하시오. [3점]

23. 함수

\[f(x) = \begin{cases}
2x+10 & (x < 1) \\
2x+a & (x \geq 1)
\end{cases} \]

이 함수 전체의 집합에서 연속이 되도록 하는 상수 a의 값을 구하시오. [3점]
24. 두 수열 \(\{a_n\}, \{b_n\} \)에 대하여
\[
\sum_{n=1}^{\infty} a_n = 4, \quad \sum_{n=1}^{\infty} b_n = 10
\]
일 때, \(\sum_{n=1}^{\infty} (a_n + 5b_n) \)의 값을 구하시오. [3점]

25. 확률 변수 \(X \)가 이항분포 \(B(n, \frac{1}{3}) \)을 따르고 \(V(3X) = 40 \)일 때,
\(n \)의 값을 구하시오. [3점]

26. 다항함수 \(f(x) \)의 도함수 \(f'(x) \)가 \(f'(x) = 6x^2 + 4 \)이다.
함수 \(y = f(x) \)의 그래프가 점 \((0, 6)\)을 지남 때, \(f(1) \)의 값을 구하시오. [4점]
27. 구간 \([0, 3]\)의 모든 실수 값을 가지는 연속확률변수 \(X\)에 대하여 \(X\)의 확률밀도함수의 그래프는 그림과 같다.

\[
P(0 \leq X \leq 2) = \frac{p}{q}\] 라 할 때, \(p + q\)의 값을 구하시오.
(단, \(k\)는 상수이고, \(p\)와 \(q\)는 서로소인 자연수이다.) [4점]

28. 자연수 \(k\)에 대하여

\[
a_k = \lim_{n \to \infty} \frac{\left(\frac{6}{k}\right)^{n+1}}{\left(\frac{6}{k}\right)^{n} + 1}
\]

이러한 때, \(\sum_{k=1}^{10} a_k\)의 값을 구하시오. [4점]
29. 두 다항함수 \(f(x) \)와 \(g(x) \)가 모든 실수 \(x \)에 대하여 \(f(x) = (x^2 - 5)g(x) \)를 만족시킨다. \(g(x) \)가 \(x = 4 \)에서 극솟값 \(27 \)을 가질 때, \(f(4) - f'(4) \)의 값을 구하시오. [4점]

30. 좌표평면에서 자연수 \(n \)에 대하여 다음 조건을 만족시키는 삼각형 \(OAB \)의 개수를 \(p(n) \)라 할 때, \(p(4) + p(5) + p(6) \)의 값을 구하시오. (단, \(O \)는 원점이다.) [4점]

(가) \(A \)는 \((a, -a) \)이다.

(나) \(B \)의 좌표는 \((b, c) \)라 할 때, \(b \)와 \(c \)는 자연수이고 \(b \leq \log_a c \)를 만족시킨다.

(다) 삼각형 \(OAB \)의 넓이는 \(6 \)이하이다.